Published on 12:00 AM, September 09, 2016

QUIRKY SCIENCE

Keeping It Cool

Stanford engineers have developed a low-cost, plastic-based textile that, if woven into clothing, could cool your body far more efficiently than is possible with the natural or synthetic fabrics in clothes we wear today.

Describing their work in Science, the researchers suggest that this new family of fabrics could become the basis for garments that keep people cool in hot climates without air conditioning.

"If you can cool the person rather than the building where they work or live, that will save energy," said Yi Cui, an associate professor of materials science and engineering and of photon science at Stanford.

This new material works by allowing the body to discharge heat in two ways that would make the wearer feel nearly 4 degrees Fahrenheit cooler than if they wore cotton clothing. 

The material cools by letting perspiration evaporate through the material, something ordinary fabrics already do. But the Stanford material provides a second, revolutionary cooling mechanism: allowing heat that the body emits as infrared radiation to pass through the plastic textile.

All objects, including our bodies, throw off heat in the form of infrared radiation, an invisible and benign wavelength of light. Blankets warm us by trapping infrared heat emissions close to the body. This thermal radiation escaping from our bodies is what makes us visible in the dark through night-vision goggles.


Ceres' Geological Activity

A lonely 3-mile-high (5-kilometer-high) mountain on Ceres is likely volcanic in origin, and the dwarf planet may have a weak, temporary atmosphere. These are just two of many new insights about Ceres from NASA's Dawn mission published this week in six papers in the journal Science.

"Dawn has revealed that Ceres is a diverse world that clearly had geological activity in its recent past," said Chris Russell, principal investigator of the Dawn mission, based at the University of California, Los Angeles.

A Temporary Atmosphere

A surprising finding emerged in the paper led by Russell: Dawn may have detected a weak, temporary atmosphere. Dawn's gamma ray and neutron (GRaND) detector observed evidence that Ceres had accelerated electrons from the solar wind to very high energies over a period of about six days. In theory, the interaction between the solar wind's energetic particles and atmospheric molecules could explain the GRaND observations.

A temporary atmosphere would be consistent with the water vapor the Herschel Space Observatory detected at Ceres in 2012-2013. The electrons that GRaND detected could have been produced by the solar wind hitting the water molecules that Herschel observed, but scientists are also looking into alternative explanations.

"We're very excited to follow up on this and the other discoveries about this fascinating world," Russell said.

source: sciencedaily.com